Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.482
Filtrar
1.
Neurología (Barc., Ed. impr.) ; 39(4): 321-328, May. 2024. graf
Artigo em Inglês | IBECS | ID: ibc-VR-490

RESUMO

Introduction: The aim of this study was to compare the effect of five types of PEGlated nanoliposomes (PNLs) on α-synuclein (α-syn) fibrillization, attenuation of microglial activation, and silence of the SNCA gene, which encodes α-syn. Methods: To evaluate the inhibition of α-syn fibrillization, we used standard in vitro assay based on Thioflavin T (ThT) fluorescence. Next, to evaluate the attenuation of microglial activation, the concentration of TNF-a and IL-6 was quantified by ELISA assay in BV2 microglia cells treated with 100 nM A53T α-syn and PNLs. In order to determine the silencing of the SNCA, real-time PCR and Western blot analysis was used. Finally, the efficacy of PNLs was confirmed in a transgenic mouse model expressing human α-syn.Results: ThT assay showed both PNL1 and PNL2 significantly inhibited a-syn fibrillization. ELISA test also showed the production of TNF-a and IL-6 was significantly attenuated when microglial cells treated with PNL1 or PNL2. We also found that SNCA gene, at both mRNA and protein levels, was significantly silenced when BV2 microglia cells were treated with PNL1 or PNL2. Importantly, the efficacy of PNL1 and PNL2 was finally confirmed in vivo in a transgenic mouse model. Conclusions: In conclusion, the novel multifunctional nanoliposomes tested in our study inhibit α-syn fibrillization, attenuate microglial activation, and silence SNCA gene. Our findings suggest the therapeutic potential of PNL1 and PNL2 for treating synucleinopathies.(AU)


Introducción: El objetivo de este estudio fue comparar el efecto de cinco tipos de nanoliposomas PEGlados (PNL) sobre la fibrilización de la α-sinucleína (α-syn), la atenuación de la activación microglial y el silencio del gen synuclein alpha (SNCA), que codifica α-syn. Métodos: Para evaluar la inhibición de la fibrilización α-syn, utilizamos un ensayo in vitro estándar basado en la fluorescencia de la tioflavina T (ThT). A continuación, para evaluar la atenuación de la activación microglial, se cuantificó la concentración de factor de necrosis tumoral alpha (TNF-a) e interleucina 6 (IL-6)mediante ensayo ELISA en células de microglía BV2 tratadas con 100 nM de α-syn de A53T y PNL. Para determinar el silenciamiento del SNCA, se utilizó reacción en cadena de la polimerasa (PCR) en tiempo real y análisis de Western blot. Finalmente, la eficacia de las PNL se confirmó en un modelo de ratón transgénico que expresa α-syn humana. Resultados: El ensayo ThT mostró que tanto PNL1 como PNL2 inhibieron significativamente la fibrilización de α-syn. La prueba enzyme-linked immunosorbent assay (ELISA) también mostró que la producción de TNF-a e IL-6 se atenuó significativamente cuando las células microgliales se trataron con PNL1 o PNL2. También encontramos que el gen SNCA, tanto a nivel de ARN mensajero (ARNm) como de proteína, se silenciaba significativamente cuando las células de microglía BV2 se trataban con PNL1 o PNL2. Es importante destacar que la eficacia de PNL1 y PNL2 finalmente se confirmó in vivo en un modelo de ratón transgénico.Conclusiones: Los nuevos nanoliposomas multifuncionales probados en nuestro estudio inhiben la fibrilización α-syn, atenúan la activación microglial y silencian el gen SNCA. Nuestros hallazgos sugieren el potencial terapéutico de PNL1 y PNL2 para el tratamiento de sinucleinopatías.(AU)


Assuntos
Humanos , Sinucleínas , Lipossomos , alfa-Sinucleína/genética , Microglia , Modelos Animais de Doenças
3.
J Neurosci ; 44(6)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38050082

RESUMO

Mixed pathologies are common in neurodegenerative disease; however, antemortem imaging rarely captures copathologic effects on brain atrophy due to a lack of validated biomarkers for non-Alzheimer's pathologies. We leveraged a dataset comprising antemortem MRI and postmortem histopathology to assess polypathologic associations with atrophy in a clinically heterogeneous sample of 125 human dementia patients (41 female, 84 male) with T1-weighted MRI ≤ 5 years before death and postmortem ordinal ratings of amyloid-[Formula: see text], tau, TDP-43, and [Formula: see text]-synuclein. Regional volumes were related to pathology using linear mixed-effects models; approximately 25% of data were held out for testing. We contrasted a polypathologic model comprising independent factors for each proteinopathy with two alternatives: a model that attributed atrophy entirely to the protein(s) associated with the patient's primary diagnosis and a protein-agnostic model based on the sum of ordinal scores for all pathology types. Model fits were evaluated using log-likelihood and correlations between observed and fitted volume scores. Additionally, we performed exploratory analyses relating atrophy to gliosis, neuronal loss, and angiopathy. The polypathologic model provided superior fits in the training and testing datasets. Tau, TDP-43, and [Formula: see text]-synuclein burden were inversely associated with regional volumes, but amyloid-[Formula: see text] was not. Gliosis and neuronal loss explained residual variance in and mediated the effects of tau, TDP-43, and [Formula: see text]-synuclein on atrophy. Regional brain atrophy reflects not only the primary molecular pathology but also co-occurring proteinopathies; inflammatory immune responses may independently contribute to degeneration. Our findings underscore the importance of antemortem biomarkers for detecting mixed pathology.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Masculino , Feminino , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/patologia , Substância Cinzenta/patologia , Proteínas tau/metabolismo , Gliose/patologia , Atrofia/patologia , Amiloide , Sinucleínas , Proteínas de Ligação a DNA/metabolismo , Biomarcadores , Doença de Alzheimer/patologia
4.
Neurología (Barc., Ed. impr.) ; 38(9): 609-616, Nov-Dic. 2023. graf, tab
Artigo em Inglês | IBECS | ID: ibc-227344

RESUMO

Background and objective: Multiple system atrophy is a rare and fatal neurodegenerative disorder, characterized by autonomic dysfunction in association with either parkinsonism or cerebellar signs. The pathologic hallmark is the presence of alpha-synuclein aggregates in oligodendrocytes, forming glial cytoplasmic inclusions. Clinically, it may be difficult to distinguish form other parkinsonisms or ataxias, particularly in the early stages of the disease. In this case series we aim to describe in detail the features of MSA patients. Material and methods: Unified MSA Rating Scale (UMSARS) score, structural and functional imaging and cardiovascular autonomic testing, are summarized since early stages of the disease. Results: UMSARS proved to be useful to perform a follow-up being longitudinal examination essential to stratify risk of poor outcome. Neuropathological diagnosis showed an overlap between parkinsonian and cerebellar subtypes, with some peculiarities that could help to distinguish from other subtypes. Conclusion: A better description of MSA features with standardized test confirmed by means of neuropathological studies could help to increase sensitivity.(AU)


Antecedentes y objetivo: La atrofia multisistémica es un trastorno neurodegenerativo raro y letal que se caracteriza por una disfunción autonómica en asociación con parkinsonismo o signos cerebelosos. La marca anatomopatológica es la presencia de agregados de α-sinucleína en los oligodendrocitos, que forman inclusiones citoplasmáticas gliales. Desde un punto de vista clínico, puede ser difícil de distinguir de otros parkinsonismos o ataxias, particularmente en las primeras etapas de la enfermedad. En esta serie de casos, nuestro objetivo es describir en detalle las características de los pacientes con atrofia multisistémica. Material y métodos: Se resumen los datos objetidos de la puntuación de la Escala de calificación unificada de la atrofia multisistémica (UMSARS), imágenes estructurales y funcionales y las pruebas autonómicas cardiovasculares realizadas desde las primeras etapas de la enfermedad. Resultados: La escala UMSAR demostró ser útil para hacer un seguimiento: el examen longitudinal esencial fue para estratificar el riesgo de peor evolución. El diagnóstico neuropatológico mostró un solapamiento entre los subtipos parkinsoniano y cerebeloso, con algunas peculiaridades que podrían ayudar a distinguir los subtipos. Conclusión: Una mejor descripción de las características de la atrofia multisistémica en casos confirmados mediante neuropatología podría ayudar a aumentar la sensibilidad del diagnóstico.(AU)


Assuntos
Humanos , Masculino , Feminino , Idoso , Atrofia , Transtornos Parkinsonianos , Ataxia , Doenças do Sistema Nervoso , Oligodendroglia , Corpos de Inclusão , Neurologia , Estudos Longitudinais , Sinucleínas
5.
BMC Genomics ; 24(1): 517, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667188

RESUMO

BACKGROUND: Previous preliminary work found that Latroeggtoxin-VI (LETX-VI), a proteinaceous neurotoxin from the eggs of spider Latrodectus tredecimguttatus, could promote the synthesis and release of dopamine in PC12 cells. However, the underlying mechanisms have not been fully clear. Here, the effects of LETX-VI on the gene expression profile and dopamine in PC12 cells were analyzed with the differential transcriptome-based strategies. RESULTS: After treatment of PC12 cells with LETX-VI for 24 h, a total of 356 differentially expressed transcripts were identified. Of them 165 were up-regulated and 191 down-regulated. Relevant GO analysis indicated that LETX-VI modulated the expression of certain genes and thereby affected multiple biological processes in PC12 cells, including protein metabolism, nucleic acid metabolism, substance transport, signaling, neurotransmitter metabolism and release. When western blot analysis was employed to confirm the abundance levels of synaptojanin 1 and synuclein alpha interacting protein, the representatives of highly up- and down-regulated transcript-encoded proteins that are closely related with dopamine respectively, it was found that the level of synaptojanin 1 in the PC12 cells treated with LETX-VI was increased, whereas that of synuclein alpha interacting protein was not obviously altered, suggesting that synaptojanin 1 may be much more involved in the effects of LETX-VI on dopamine. After synaptojanin 1 level was knocked down using siRNA, the levels of both total and released dopamine were significantly decreased, indicating that synaptojanin 1 is a protein positively modulating the synthesis and secretion of dopamine. When the PC12 cells with knocked down synaptojanin 1 were treated by LETX-VI, the adverse effects of synaptojanin 1 knockdown on dopamine were attenuated, confirming that LETX-VI promotes the synthesis and secretion of dopamine at least partially by enhancing the expression of the gene SYNJ1 encoding synaptojanin 1. CONCLUSIONS: This work demonstrates that LETX-VI exerts multiple regulatory effects on the cellular processes in PC12 cells by altering the gene expression profile. LETX-VI modulates the expression of the genes closely related to the synthesis, transport and release of neurotransmitters especially dopamine in PC12 cells, with the gene SYNJ1 encoding synaptojanin 1 as a main target.


Assuntos
Dopamina , Neurotoxinas , Monoéster Fosfórico Hidrolases , Animais , Ratos , Células PC12 , RNA Interferente Pequeno , Sinucleínas , Proteínas de Artrópodes/toxicidade , Proteínas do Ovo/toxicidade
7.
Curr Mol Pharmacol ; 16(5): 564-579, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36330625

RESUMO

Sodiun Oxybate (SO) has a number of attributes that may mitigate the metabolic stress on the substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons in Parkinson's disease (PD). These neurons function at the borderline of energy sufficiency. SO is metabolized to succinate and supplies energy to the cell by generating ATP. SO is a GABAB agonist and, as such, also arrests the high energy requiring calcium pace-making activity of these neurons. In addition, blocking calcium entry impedes the synaptic release and subsequent neurotransmission of aggregated synuclein species. As DA neurons degenerate, a homeostatic failure exposes these neurons to glutamate excitotoxicity, which in turn accelerates the damage. SO inhibits the neuronal release of glutamate and blocks its agonistic actions. Most important, SO generates NADPH, the cell's major antioxidant cofactor. Excessive free radical production within DA neurons and even more so within activated microglia are early and key features of the degenerative process that are present long before the onset of motor symptoms. NADPH maintains cell glutathione levels and alleviates oxidative stress and its toxic consequences. SO, a histone deacetylase inhibitor also suppresses the expression of microglial NADPH oxidase, the major source of free radicals in Parkinson brain. The acute clinical use of SO at night has been shown to reduce daytime sleepiness and fatigue in patients with PD. With long-term use, its capacity to supply energy to DA neurons, impede synuclein transmission, block excitotoxicity and maintain an anti-oxidative redox environment throughout the night may delay the onset of PD and slow its progress.


Assuntos
Doença de Parkinson , Oxibato de Sódio , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Oxibato de Sódio/metabolismo , Oxibato de Sódio/uso terapêutico , Cálcio/metabolismo , NADP/metabolismo , NADP/uso terapêutico , Neurônios Dopaminérgicos/metabolismo , Sinucleínas/metabolismo , Glutamatos/metabolismo
8.
Carcinogenesis ; 43(11): 1071-1082, 2022 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-36179220

RESUMO

Alpha-synuclein (SNCA) is a pathological hallmark of Parkinson's disease, known to be involved in cancer occurrence and development; however, its specific effects in breast cancer remain unknown. Data from 150 patients with breast cancer were retrieved from tissue microarray and analyzed for SNCA protein level using immunohistochemistry. Functional enrichment analysis was performed to investigate the potential role of SNCA in breast cancer. SNCA-mediated inhibition of epithelial-mesenchymal transition (EMT) was confirmed with western blotting. The effects of SNCA on invasion and migration were evaluated using transwell and wound-healing experiments. Furthermore, the potential influence of SNCA expression level on drug sensitivity and tumor infiltration by immune cells was analyzed using the public databases. SNCA is lowly expressed in breast cancer tissues. Besides, in vitro and in vivo experiments, SNCA overexpression blocked EMT and metastasis, and the knockdown of SNCA resulted in the opposite effect. A mouse model of metastasis verified the restriction of metastatic ability in vivo. Further analysis revealed that SNCA enhances sensitivity to commonly used anti-breast tumor drugs and immune cell infiltration. SNCA blocks EMT and metastasis in breast cancer and its expression levels could be useful in predicting the chemosensitivity and evaluating the immune microenvironment in breast cancer.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias , Animais , Camundongos , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Sinucleínas , Prognóstico , Movimento Celular/genética , alfa-Sinucleína/farmacologia
9.
Adv Clin Exp Med ; 31(9): 931-935, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36000877

RESUMO

There are numerous surprising discoveries in current comprehensive biopolymer research, including the description of new types of biopolymers and the extension of their applications. The discovery of a new rotifer-specific biopolymer family (Rotimers) and the exceptional ability of these micrometazoans to inactivate and catabolize human-type neurotoxic aggregates (e.g., beta-amyloids, alpha-synucleins, prions) by their exudates can be mentioned as the original work of our research group. Rotimers are exogenous and protein complex molecules with a calcium-dependent production mechanism in both bdelloid and monogonant rotifers. However, their experimental and application possibilities are still unknown; only part of the class has been explored and described. Current Rotimer-related studies present promising biodiversity and bioactivity of these biomaterials (e.g., antiand disaggregation effects or high degrees of adhesion to other molecules). The primary objective of current research is to explore and develop their application in translational biomedicine. A key area is the design of drug candidates against neurodegeneration-related aggregates based on the molecular information provided by the composition, structure and function of Rotimers. These novel biomaterials have the potential to open new perspectives in the pharmaceutical industry and healthcare.


Assuntos
Príons , Rotíferos , Animais , Materiais Biocompatíveis , Biopolímeros/metabolismo , Biopolímeros/farmacologia , Cálcio/metabolismo , Humanos , Príons/metabolismo , Príons/farmacologia , Rotíferos/metabolismo , Sinucleínas/metabolismo
10.
J Neural Transm (Vienna) ; 129(2): 133-139, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35041062

RESUMO

Creutzfeldt-Jakob disease (CJD) is the leading human prion disease and is a major public health concern, with the risk of secondary iatrogenic transmission. Screening for CJD is often based on the detection of 14-3-3 protein in cerebrospinal fluid (CSF) through western blot assay and, in a second step, on a more specific method such as RT-QuIC (Real-Time Quaking-Induced Conversion). Alternatives to the detection of 14-3-3 in CSF have recently been proposed, specifically CSF tau proteins, tau/p-tau(181) ratio, and alpha-synuclein. In the present work, we compare the diagnostic performance of these biomarkers with that of 14-3-3 protein in a cohort of suspected CJD patients. Our results indicate that tau detection is the most effective and suitable approach for routine disease detection in a clinical setting. Combination with other biomarkers does not improve overall performance, while the tau/p-tau(181) ratio remains useful for differentiating Alzheimer's from CJD. In the end, the performance of tau protein detection in CSF reached 78% sensitivity and 80% specificity for the detection of CJD. It is interesting to note that the use of an automated method with a high concentration range allows for rapid and accurate results, which is very useful in clinical practice and allows for confirmatory testing such as RT-QuIC without delay.


Assuntos
Síndrome de Creutzfeldt-Jakob , Proteínas tau , Proteínas 14-3-3/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquidiano , Síndrome de Creutzfeldt-Jakob/diagnóstico , Humanos , Sensibilidade e Especificidade , Sinucleínas , Proteínas tau/líquido cefalorraquidiano
11.
CNS Neurol Disord Drug Targets ; 21(9): 766-773, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34802410

RESUMO

BACKGROUND: Vitamins are the micronutrients required for boosting the immune system and managing any future infection. Vitamins are involved in neurogenesis, a defense mechanism working in neurons, metabolic reactions, neuronal survival, and neuronal transmission. Their deficiency leads to abnormal functions in the brain like oxidative stress, mitochondrial dysfunction, accumulation of proteins (synuclein, Aß plaques), neurodegeneration, and excitotoxicity. METHODS: In this review, we have compiled various reports collected from PubMed, Scholar Google, Research gate, and Science direct. The findings were evaluated, compiled, and represented in this manuscript. CONCLUSION: The deficiency of vitamins in the body causes various neurological disorders like Alzheimer's disease, Parkinson's disease, Huntington's disease, and depression. We have discussed the role of vitamins in neurological disorders and the normal human body. Depression is linked to a deficiency of vitamin-C and vitamin B. In the case of Alzheimer's disease, there is a lack of vitamin- B1, B12, and vitamin-A, which results in Aß-plaques. Similarly, in Parkinson's disease, vitamin- D deficiency leads to a decrease in the level of dopamine, and imbalance in vitamin D leads to accumulation of synuclein. In MS, vitamin-C and vitamin-D deficiency causes demyelination of neurons. In Huntington's disease, vitamin- C deficiency decreases the antioxidant level, enhances oxidative stress, and disrupts the glucose cycle. vitamin B5 deficiency in Huntington's disease disrupts the synthesis of acetylcholine and hormones in the brain.


Assuntos
Deficiência de Vitaminas , Doenças Neurodegenerativas , Vitaminas , Doença de Alzheimer/metabolismo , Deficiência de Vitaminas/complicações , Humanos , Doença de Huntington/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , Sinucleínas , Vitamina A , Vitaminas/metabolismo
12.
Adv Clin Chem ; 103: 97-134, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34229853

RESUMO

Neurodegenerative diseases are a heterogeneous group of disorders characterized by gradual progressive neuronal loss in the central nervous system. Unfortunately, the pathogenesis of many of these diseases remains unknown. Synucleins are a family of small, highly charged proteins expressed predominantly in neurons. Following their discovery, much has been learned about their structure, function, interaction with other proteins and role in neurodegenerative disease over the last two decades. One of these proteins, α-Synuclein (α-Syn), appears to be involved in many neurodegenerative disorders. These include Parkinson's disease (PD), dementia with Lewy bodies (DLB), Rapid Eye Movement Sleep Behavior Disorder (RBD) and Pure Autonomic Failure (PAF), i.e., collectively termed α-synucleinopathies. This review focuses on α-Syn dysfunction in neurodegeneration and assesses its role in synucleinopathies from a biochemical, genetic and neuroimaging perspective.


Assuntos
Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Sinucleínas/metabolismo , Biomarcadores/metabolismo , Regulação da Expressão Gênica , Humanos , Doenças Neurodegenerativas/genética , Sinucleínas/genética
13.
J Vis Exp ; (171)2021 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-34125097

RESUMO

Using spectroscopic rulers to track multiple conformations of single biomolecules and their dynamics have revolutionized the understanding of structural dynamics and its contributions to biology. While the FRET-based ruler reports on inter-dye distances in the 3-10 nm range, other spectroscopic techniques, such as protein-induced fluorescence enhancement (PIFE), report on the proximity between a dye and a protein surface in the shorter 0-3 nm range. Regardless of the method of choice, its use in measuring freely-diffusing biomolecules one at a time retrieves histograms of the experimental parameter yielding separate centrally-distributed sub-populations of biomolecules, where each sub-population represents either a single conformation that stayed unchanged within milliseconds, or multiple conformations that interconvert much faster than milliseconds, and hence an averaged-out sub-population. In single-molecule FRET, where the reported parameter in histograms is the inter-dye FRET efficiency, an intrinsically disordered protein, such as the α-Synuclein monomer in buffer, was previously reported as exhibiting a single averaged-out sub-population of multiple conformations interconverting rapidly. While these past findings depend on the 3-10 nm range of the FRET-based ruler, we sought to put this protein to the test using single-molecule PIFE, where we track the fluorescence lifetime of site-specific sCy3-labeled α-Synuclein proteins one at a time. Interestingly, using this shorter range spectroscopic proximity sensor, sCy3-labeled α-Synuclein exhibits several lifetime sub-populations with distinctly different mean lifetimes that interconvert in 10-100 ms. These results show that while α-Synuclein might be disordered globally, it nonetheless attains stable local structures. In summary, in this work we highlight the advantage of using different spectroscopic proximity sensors that track local or global structural changes one biomolecule at a time.


Assuntos
Conformação Molecular , Transferência Ressonante de Energia de Fluorescência , Proteínas Intrinsicamente Desordenadas , Substâncias Macromoleculares , Sinucleínas
14.
Molecules ; 26(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064018

RESUMO

Recent studies have implicated synucleins in several reactions during the biosynthesis of lipids and fatty acids in addition to their recognised role in membrane lipid binding and synaptic functions. These are among aspects of decreased synuclein functions that are still poorly acknowledged especially in regard to pathogenesis in Parkinson's disease. Here, we aimed to add to existing knowledge of synuclein deficiency (i.e., the lack of all three family members), with respect to changes in fatty acids and lipids in plasma, liver, and two brain regions in triple synuclein-knockout (TKO) mice. We describe changes of long-chain polyunsaturated fatty acids (LCPUFA) and palmitic acid in liver and plasma, reduced triacylglycerol (TAG) accumulation in liver and non-esterified fatty acids in plasma of synuclein free mice. In midbrain, we observed counterbalanced changes in the relative concentrations of phosphatidylcholine (PC) and cerebrosides (CER). We also recorded a notable reduction in ethanolamine plasmalogens in the midbrain of synuclein free mice, which is an important finding since the abnormal ether lipid metabolism usually associated with neurological disorders. In summary, our data demonstrates that synuclein deficiency results in alterations of the PUFA synthesis, storage lipid accumulation in the liver, and the reduction of plasmalogens and CER, those polar lipids which are principal compounds of lipid rafts in many tissues. An ablation of all three synuclein family members causes more profound changes in lipid metabolism than changes previously shown to be associated with γ-synuclein deficiency alone. Possible mechanisms by which synuclein deficiency may govern the reported modifications of lipid metabolism in TKO mice are proposed and discussed.


Assuntos
Metabolismo dos Lipídeos , Sinucleínas/genética , Animais , Encéfalo/metabolismo , Ácidos Graxos/metabolismo , Lipídeos/sangue , Fígado/metabolismo , Camundongos , Camundongos Knockout
15.
Mol Med Rep ; 23(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33864663

RESUMO

Parkinson's disease (PD) is one of the most disabling diseases of the central nervous system, seriously affecting health and quality of life for the elderly. The present study aimed to explore the effects of nuclear receptor subfamily 4 group A member 2 (Nurr1) and nuclear factor­κB (NF­κB) on the progression of Parkinson's disease (PD). Pheochromocytoma (PC12) cells were pretreated with the NF­κB inhibitor quinazoline (QNZ) or transfected with small interfering (si)RNA­NF­κB, followed by the addition of lipopolysaccharide (LPS). After culturing for 24 h, Cell Counting Kit­8 (CCK­8) was utilized to measure cell viability. Next, the expression levels of interleukin (IL)­1ß, IL­6 and tumor necrosis factor (TNF)­α were determined using the relevant Enzyme­linked immunosorbent assay kits. Expression levels of p65, tyrosine hydroxylase (TH), α­Synuclein (A­SYN) and Nurr1 were examined by immunofluorescence and western blotting. CCK­8 results showed that the cell viability was significantly reduced in the LPS group than in the control group (P<0.05), whereas QNZ and si­NF­κB demonstrated significantly enhanced viability induced by LPS (P<0.05). After LPS induction, the levels of IL­1ß, IL­6 and TNF­α were significantly elevated when compared with those in the control group (P<0.05), whereas QNZ and NF­κB interference partially restored their levels. Additionally, after LPS induction, the expression of p65 and A­SYN was higher, while the expression of TH and Nurr1 was lower. However, QNZ and NF­κB treatment significantly reversed the expression levels induced by LPS (P<0.05). Finally, it was observed that NF­κB may be negatively associated with Nurr1. In conclusion, inhibition of NF­κB may reduce the production of inflammatory factors by upregulating Nurr1 and TH and downregulating A­SYN, thus relieving the inflammatory response in PD.


Assuntos
Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Doença de Parkinson/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Células PC12 , Quinazolinas/farmacologia , Ratos , Sinucleínas/genética , Sinucleínas/metabolismo , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
16.
Annu Rev Pathol ; 16: 465-485, 2021 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-33497259

RESUMO

Specific proteins accumulate in neurodegenerative disease, and human genetics has indicated a causative role for many. In most cases, however, the mechanisms remain poorly understood. Degeneration is thought to involve a gain of abnormal function, although we do not know the normal function of many proteins implicated. The protein α-synuclein accumulates in the Lewy pathology of Parkinson's disease and related disorders, and mutations in α-synuclein cause degeneration, but we have not known its normal function or how it triggers disease. α-Synuclein localizes to presynaptic boutons and interacts with membranes in vitro. Overexpression slows synaptic vesicle exocytosis, and recent data suggest a normal role for the endogenous synucleins in dilation of the exocytic fusion pore. Disrupted membranes also appear surprisingly prominent in Lewy pathology. Synuclein thus interacts with membranes under both physiological and pathological conditions, suggesting that the normal function of synuclein may illuminate its role in degeneration.


Assuntos
Doenças Neurodegenerativas , Sinucleínas/genética , Sinucleínas/metabolismo , Animais , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia
17.
J Oral Pathol Med ; 50(2): 165-174, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33064859

RESUMO

BACKGROUND: Clinical diagnosis and monitoring are crucial to reduce the mortality from oral squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMDs). It has been demonstrated that synuclein-γ (SNCG) and squamous cell carcinoma antigen (SCCAg) are highly expressed in patients with OSCC and perhaps participate in OSCC progression. This study analyzed the levels of serum SNCG and SCCAg in OSCC, OPMD, and control patients, and evaluated the diagnostic and clinical value of single and combined detection of serum SNCG and SCCAg in OSCC and OPMDs. PATIENTS AND METHODS: Serum samples were collected from 197 patients including 87 patients with OSCC, 30 patients with OPMDs, and 80 healthy volunteers as controls. Enzyme-linked immunosorbent assay and statistical analysis were utilized to determine SNCG and SCCAg levels in serum. RESULTS: The levels of SNCG and SCCAg in serum were significantly higher in OSCC compared with OPMDs and controls. There was a correlation between SNCG level and ethnicity, and SCCAg was correlated with differentiation. Furthermore, the area under the curves, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of combined detection of SNCG and SCCAg were better than any single detection. CONCLUSION: The combined detection of SNCG and SCCAg in serum could become a new standard method to distinguish between OSCC and OPMDs and improve diagnostic performance for OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Antígenos de Neoplasias , Biomarcadores Tumorais , Carcinoma de Células Escamosas/diagnóstico , Humanos , Neoplasias Bucais/diagnóstico , Serpinas , Carcinoma de Células Escamosas de Cabeça e Pescoço , Sinucleínas
18.
J Cell Physiol ; 236(1): 440-457, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32557610

RESUMO

Parkinsonism is one of the most common aging neurodegenerative disorders. This study aims to compare the therapeutic effect of stem cell versus its conditioned medium in the Parkinsonism model. Parkinsonism was induced by daily subcutaneous injection of 0.5 mg/kg of rotenone dissolved in dimethyl sulfoxide for 28 days. Fifty rats were divided randomly into five groups: control, dimethyl sulfoxide, Parkinsonism, stem cell-treated, and conditioned medium-treated groups. Midbrain specimens were obtained for histological, immunohistochemical, and biochemical studies. Lewy bodies were observed in the Parkinsonism group in the dopaminergic neuron and neuropil as well. Almost all of the pathological changes were clearly ameliorated in both stem cell- and conditioned medium-treated groups as confirmed by biochemical, histological, and immunohistochemical (anti-nestin, anti-glial fibrillary acidic protein, and anti-α synuclein) studies. However, the conditioned medium showed more superior therapeutic effect establishing nearly the normal histological architecture of substantia nigra. These results may pave the future for using stem cell-conditioned medium as a more convenient and effective adjuvant therapy in Parkinsonism and other neurodegenerative disorders.


Assuntos
Células da Medula Óssea/metabolismo , Meios de Cultivo Condicionados/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transtornos Parkinsonianos/metabolismo , Animais , Células da Medula Óssea/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Mesencéfalo/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Nestina/metabolismo , Neurópilo/efeitos dos fármacos , Neurópilo/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Ratos , Rotenona/farmacologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Sinucleínas/metabolismo
19.
Geriatr Gerontol Int ; 21(1): 85-93, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33244850

RESUMO

AIM: The enteric nervous system degenerates gradually with age, and α-synuclein (α-syn) is a suitable marker of enteric nervous system degeneration, which is intimately related with endoplasmic reticulum stress and unfolded protein response (UPRER ). Saponins from Panax japonicus (SPJ) have obvious protective effects on neurons in several degenerative disease models. Here, the study was designed to investigate whether SPJ could reverse the neuron degeneration through regulating the UPRER in the colon myenteric plexus of aging rats. METHODS: Aging rats had been treated with SPJ for 6 months since they were aged 18 months. Then, the colon samples were collected and neuron morphology in the myenteric plexus was observed. Immunohistochemistry staining was used to detect the expressions of NeuN, α-syn, GRP78 and three different UPRER branches. Double immunofluorescence was used to determine the co-localization of α-syn and NeuN, GRP78 and NeuN. RESULTS: Neurons degenerated in the colon myenteric plexus of aging rats, but co-localization of α-syn and NeuN increased. In addition, both the expressions of GRP78 and three UPRER branch signaling pathway proteins decreased in the colon myenteric plexus of aging rats. Treatment of SPJ almost alleviated the above effects in aging rats, except for ATF6. CONCLUSIONS: SPJ could reverse the neuron loss caused by accumulation of α-syn in the myenteric plexus of colon in aging rats, which is potentially associated with increased GRP78 and most URPER changes. Geriatr Gerontol Int 2021; 21: 85-93.


Assuntos
Panax , Saponinas , Envelhecimento , Animais , Colo , Estresse do Retículo Endoplasmático , Plexo Mientérico , Neurônios , Ratos , Sinucleínas
20.
Acta Neuropathol ; 141(4): 471-490, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32740728

RESUMO

The SNCA locus currently has an indisputable role in Parkinson's disease and other synucleinopathies. The role of genetic variability in the other members of the synuclein family (SNCB and SNCG) in disease is far less clear. In this review, we critically assess the pathogenicity, main characteristics, and roles of genetic variants in these genes reported to be causative of synucleinopathies. We also summarize the different association signals identified in the SNCA locus that have been associated with risk for disease. We take a bird's eye view of the variability currently reported in the general population for the three genes and use these data to infer on the potential relationship between each of the genes and human disease.


Assuntos
Sinucleinopatias/genética , Sinucleínas/genética , Animais , Humanos , Doenças Neurodegenerativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...